Quantum Thermodynamic Analysis on the Cooling Rate of Espresso Coffee: A Non-Linear Schrödinger Equation Approach in Hilbert Space

Albert Kopistein

Laboratory of Liquid Physics, Institute of Coffee Technology, Bandung. Indonesia albert.k@ict-fake.ac.id

Marie Curie-Brew

Department of Nuclear Chemistry, University of Aroma Science. France marie.brew@aroma-univ.edu

Abstract: This study aims to model the phenomenon of espresso coffee cooling not merely as a classical thermodynamic process, but as one involving quantum fluctuations at the molecular level of caffeine. By modifying Newton's Law of Cooling using the Hamiltonian operator, we discovered that at temperatures $T > 80^{\circ}C$, the system's entropy experiences anomalies unexplained by classical physics. Numerical simulations indicate a strong correlation between the electron spin in water molecules and the resulting bitterness profile.

Keywords: Quantum Thermodynamics, Espresso Dynamics, Schrödinger Equation, Caffeine Entropy, Fluid Mechanics.

1. Introduction

Coffee is a complex colloidal suspension. In classical physics, the rate of temperature change \$\frac{dT}{dt}\$ is described by Newton's Law of Cooling. However, when examining intermolecular interactions on a microscopic scale, quantum effects cannot be ignored.

This research proposes a new equation that incorporates Planck's constant (\$\hbar\$) into the coffee cup.

2. Theoretical Framework

2.1. Basic Equations

The total energy of the system (\$E\$) in a cup of coffee is defined as the sum of kinetic and potential energy, expressed via the Hamiltonian operator (\$\hat{H}\$):

$$\hat{H}\Psi(x,t)=i\hbarrac{\partial\Psi}{\partial t}$$

Where \$\Psi\$ is the wave function of the rising coffee steam.

2.2. Thermodynamic Modifications

To calculate the probability of the coffee becoming cold before it is consumed, we utilize an integral with infinite limits:

$$P(cold) = \int_{-\infty}^{\infty} |\Psi(x,t)|^2 \, dx = 1$$

If we introduce variables for sugar (\$g\$) and creamer (\$k\$), the entropy equation (\$S\$) becomes more complex:

$$S = -k_B \sum_i p_i \ln p_i + \sqrt{rac{lpha}{eta^2}}$$

Where \$\alpha\$ is the viscosity coefficient of the milk and \$\beta\$ is the spoon rotation velocity.

3. Methodology

Experiments were conducted using a 9-bar pressure espresso machine. The temperature was measured using a Type-K thermocouple connected to an Arduino Uno microcontroller.

Data was collected at intervals of \$\Delta t = 0.5\$ seconds.

4. Results and Discussion

The temperature decay graph shows a deviation from classical predictions. Below is the observation table for Gibbs free energy:

(Table Test - Check your border styling)

Initial Temp (T0)	Half-Life (t1/2)	Decay Constant (λ)
\$95^\circ\text{C}\$	120 s	\$2.5 \times 10^{-3}\$

Initial Temp (T0)	Half-Life (t1/2)	Decay Constant (λ)
\$85^\circ\text{C}\$	145 s	\$1.8 \times 10^{-3}\$
\$75^\circ\text{C}\$	180 s	\$1.2 \times 10^{-3}\$

It is observed that the hotter the water, the more chaotic the sub-atomic particle movement, consistent with the limit equation:

 $\sum_{T \to 0} S = 0$

However, in unfiltered coffee, \$S\$ never reaches zero due to the presence of *ground residues*.

5. Conclusion

It can be concluded that consuming coffee while it is hot (\$\Psi_{hot}\$) provides greater kinetic energy for lecturers compared to when the coffee is cold (\$\Psi_{cold}\$). Further research is suggested regarding the influence of donuts on space-time curvature in the campus cafeteria.

D. References

Bohr, N. (1920). *Quantum Coffee Mechanics*. Copenhagen: Danish Press. Hawking, S. (1999). *A Brief History of Time and Tea*. Journal of Theoretical Beverages, 10(1), 50-60.

Einstein, A. (1905). *On the Electrodynamics of Moving Baristas*. Annalen der Physik, 17, 891–921. https://doi.org/10.1000/phys.1905.barista